Skip to content
NEW RELEASE | Full Spectrum High Efficiency D50 5000K Standard Illuminant LED Strip
NEW RELEASE | Full Spectrum High Efficiency D50 5000K Standard Illuminant LED Strip
Different Kinds of White Tunable LED Part.2

Different Kinds of White Tunable LED Part.2

The advent of SSL technology has already brought substantial change to the lighting industry, and the evolution of products is ongoing. One recent intriguing development is color-tunable luminaires. Although versions of this product type have been around for years, LEDs make color-tunable luminaires much more practical, even though they remain a niche market segment. With potential benefits including improved health and well-being, increased productivity, enhanced mood or alertness, and higher occupant satisfaction, there is reason to believe that color-tunable luminaires will gain market share. At this point, however, it is important to understand the tradeoffs, limitations, and issues, so that the industry can work together to maximize the rate of product maturation.

To have the best performance when using white tunable LED products, we need to understand the different kinds of white tunable LED products. Include the available types of color-tunable products and the types of control for color-tunable products.

  • Full-Color-Tunable

These products, also referred to as RGB, RGBA, RGBW, spectrally tunable, or color changing, usually have three or more different LED primaries that can be individually varied in output to create a mixture of light that is white, a tint of white, or a saturated hue. The individual LEDs used in a full-color-tuning mixture can be very narrow band LEDs (producing a narrow range of blue or red, for example), or also monochromatic but with phosphor coatings that produce a slightly wider spread of color (e.g., a “mint” green LED is a phosphor-coated blue) or white PC LEDs (W) produced by phosphor-coating a blue- or violet-pump LED. Usually, the different monochromatic LED colors include red, green, and blue (RGB, the primary colors of light), but these can be augmented with amber (A), one or more white PC LEDs (W), and other monochromatic colors. The minimum number of LED colors is three for full-color tuning, but four-, five-, and seven-color systems are also on the architectural lighting market, and some sophisticated color systems use even more unique colors of individual LEDs.

1. Application

Ne unique advantage of this type of color-tuning is the ability to move the color point of the blackbody locus or, put more simply, to move beyond different CCTs of white light toward the light with a distinct color. For example, such a product could provide 4000K light in an office during the day and then be tuned for a purple-themed party in the evening. This makes full-color-tunable products well-suited for such applications as theaters, theme parks, and restaurants.

Another advantage of full-color tuning is the ability to match the chromaticity of any other light source. Light from fluorescent lamps, for example, is difficult to match with LEDs, because “3500 K” can be created by dozens of different combinations of spectra, and the chromaticity can appear distinctly green or pink while still legitimately calculating to 3500 K. The only way to closely match the chromaticity of a light source is by manipulating the output of individual LEDs.

White matching the color rendering of different sources can be even more difficult, controlling the colors of individual LEDs introduces the option of tuning the spectrum to enhance colors for retail applications – for example, making a floral arrangement really “pop” in appearance.










2. Controls

The wide variability of full-color tuning requires a user interface that is more complicated than a simple slide dimmer. A control protocol such as DMX, DALI, or wireless with high resolution is required, and the luminaire must be powered separately from the intensity and color control signals.

White-tunable products require a minimum of two independent LED primaries, with the most basic configuration being a mix of warm-white and cool-white phosphor-coated (PC) LEDs. The ratio of the two can be adjusted to mix the light to CCTs anywhere in between the minimum and maximum CCT. Mixing only two LED primaries results in a linear range of chromaticity; therefore the nomenclature linear white tuning is used in this report. However, the blackbody locus, which serves as a reference for CCT calculations, is not linear in a chromaticity diagram. Accordingly, two-primary white-tunable products will not follow the blackbody locus (i.e., will not have the same Duv) throughout their color range; instead, they may take on a purple/pink tint in the middle of the available range (Figure 1). This deviation from the blackbody becomes larger with a wider range of possible CCTs, although it may or may not be noticeable or objectionable.

Other types of white-tunable luminaires combine more LED primaries, which allows more flexibility for changing color. All of the products tested for this investigation with more than two primaries attempted to follow the blackbody locus, giving rise to the classification of nonlinear white tuning or blackbody white tuning (also shown in Figure 1). One approach seen in this round of testing was the combination of two white LEDs (warm-white and cool-white) with a red LED. Other products used three, four, or five independent LED primaries and preprogrammed calibrations/control-response algorithms.

  • Types of Controls for Color-Tunable Products

White-tunable and full-color-tunable products vary in their type of control, generally using 0–10 V, DMX, or DALI protocols. While each method allows the user to adjust the color and/or output of the product, they can be implemented in several ways. Some manufacturers provide proprietary control devices, which often rely on an existing protocol but provide a customized user interface/hardware. Other color-tunable lamps and luminaires rely on controls from third-party manufacturers, which provide a greater range of options but may also lead to compatibility issues.

The products tested for this investigation were controlled using DMX software, 0-10 V “dimmers”, or a proprietary control device. This provided variety, but the exact type of control system was not a focus, as long as the applicable range of output could be achieved. Nonetheless, the control interface is an important aspect of implementation for color-tunable lighting systems and may ultimately play a large role in their acceptance by end users.

Beyond the user experience, the control system used may have some effect on the performance of the luminaire. For example, some LED drivers expect either a linear or a logarithmic signal over the dimming range, and performance can vary if the appropriate signal is not provided. For this report, all products were tested on an appropriate control, but the investigation did not test a given luminaire with multiple controls.


CALiPER Report23: Photometric Testing of White-Tunable LED Luminaires


Previous article Dim-to-Warm Flexible LED Strip | Dim-to-Warm LED Tape Lights
Next article Different Kinds of White Tunable LED Part.1

Leave a comment

Comments must be approved before appearing

* Required fields